Pharmacology of currents underlying the different firing patterns of spinal sensory neurons and interneurons identified in vivo using multivariate analysis.
نویسندگان
چکیده
The operation of neuronal networks depends on the firing patterns of the network's neurons. When sustained current is injected, some neurons in the central nervous system fire a single action potential and others fire repetitively. For example, in Xenopus laevis tadpoles, primary-sensory Rohon-Beard (RB) neurons fired a single action potential in response to 300-ms rheobase current injections, whereas dorsolateral (DL) interneurons fired repetitively at 10-20 Hz. To investigate the basis for these differences in vivo, we examined drug-induced changes in the firing patterns of Xenopus spinal neurons using whole cell current-clamp recordings. Neuron types were initially separated through cluster analysis, and we compared results produced using different clustering algorithms. We used these results to develop a predictive function to classify subsequently recorded neurons. The potassium channel blocker tetraethylammonium (TEA) converted single-firing RB neurons to low-frequency repetitive firing but reduced the firing frequency of repetitive-firing DL interneurons. Firing frequency in DL interneurons was also reduced by the potassium channel blockers 4-aminopyridine (4-AP), catechol, and margatoxin; 4-AP had the greatest effect. The calcium channel blockers amiloride and nimodipine had few effects on firing in either neuron type but reduced action potential duration in DL interneurons. Muscarine, which blocks M-currents, did not affect RB neurons but reduced firing frequency in DL interneurons. These results suggest that potassium currents may control neuron firing patterns: a TEA-sensitive current prevents repetitive firing in RB neurons, whereas a 4-AP-sensitive current underlies repetitive firing in DL interneurons. The cluster and discriminant analysis described could help to classify neurons in other systems.
منابع مشابه
Complex autonomous firing patterns of striatal low-threshold spike interneurons.
During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity seen in vivo. However, whether there are other striatal neurons among the group identified as TANs is unk...
متن کاملThe firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat
Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the midbrain neural basis underlying each phase of behavior in formalin test has not been clarified. The present study was designed to investigate the nucleus cuneiformis (CnF) neuronal responses during two phases after subcutaneous injection of formalin into the hind paw...
متن کاملSpinal cord injury causes plasticity in a subpopulation of lamina I GABAergic interneurons.
Dysfunction of the spinal GABAergic system has been implicated in pain syndromes following spinal cord injury (SCI). Since lamina I is involved in nociceptive and thermal signaling, we characterized the effects of chronic SCI on the cellular properties of its GABAergic neurons fluorescently identified in spinal slices from GAD67-GFP transgenic mice. Whole cell recordings were obtained from the ...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملComplex autonomous firing patterns of striatal low - threshold 1 spike interneurons
19 During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts 20 and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons 21 display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity 22 seen in vivo. But whether there are other striatal neurons among the group identified as TANs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 105 5 شماره
صفحات -
تاریخ انتشار 2011